Tylerville Center Water Supply Alternatives Evaluation

Public Hearing, Scoping Meeting and Presentation

June 21, 2017

Connecticut Department of Energy and Environmental Protection

Agenda

- Water Supply Alternatives Evaluation Report
 - Project Background
 - Study Area
 - Groundwater Impacts
 - Regulatory Criteria
 - Evaluation of Alternatives
 - Selected Alternative
 - Costs
- Path Forward
- Public Comments and Q&A

Project Background

- Pollution of potable wells first identified in late 1970s/early 1980s
 - Chlorinated solvents, MTBE, 1,4-dioxane
 - CT DEEP groundwater monitoring program
- Carbon filter systems and bottled water provided where needed to approximately 18 homes
 - 5 commercial properties also affected
- Pollution has persisted
- CT DEEP investigation/enforcement on-going
- CT DEEP commissioned water supply alternatives evaluation in accordance with RCSA 22a-471-1

Tylerville Study Area

Tylerville Study Area – Impacted Properties By Contaminant

CURRENT

WATER TREATMENT

FILTER

BOTTLED WATER

DEEP FILTER

- WELL SERVICE

EXCEEDANCE

CVOC's

MULTIPLE

COMPOUNDS

DETECTION

CVOC's

MTBE

MULTIPLE COMPOUNDS

Study Area and Groundwater Impacts

- Study area limits
 - 99 properties, mixed land uses zoned for residential, commercial and industrial activities
- Complex geology and hydrogeology
- Pollution present in overburden and bedrock groundwater
- Groundwater flow generally east/southeast toward the Connecticut River
 - Pollution migration is a function of bedrock fracture geometry and hydraulic conditions
 - > Unpredictable
- Ongoing hydrogeologic study

Study Area and Groundwater Impacts

- Multiple documented release areas
- Contaminants of concern include:
 - Chlorinated volatile organic compounds
 - 1,4-dioxane
 - o MTBE
 - Naturally occurring arsenic recently identified
- Pollution present in overburden and bedrock water supply wells

Study Area and Groundwater Impacts

Regulatory Criteria

- CT DPH Drinking Water Action Levels
- US EPA Maximum Contaminant Levels

Parameter	US EPA MCL (µg/L)	CT DPH Drinking Water Action Levels (µg/L)	CT DPH Showering/Bathing Action Levels (µg/L)
1,4-Dioxane	~	3	50
MTBE	~*	70	~
1,1,1-Trichloroethane	200	200	~
Tetrachloroethene	5	5	~
Trichloroethene	5	1	~
1,1-Dichloroethene	7	7	~
Cis-1,2-Dichloroethene	70	~	~
Trans-1,2-Dichloroethene	100	~	~
1,1-Dichloroethane	~	25	~
Vinyl chloride	2	0.5	~

^{*}US EPA does not currently have an MCL for MTBE, but advises for a 20-40 µg/L limit for smell and taste.

Identification and Evaluation of Water Supply Alternatives

Identification of Water Supply Alternatives

- 1. Development of Community Water Supply
 - Installation of well and distribution piping network
- 2. New Individual Wells
- 3. Individual Water Treatment Systems
 - Granular Activated Carbon (GAC) treatment
 - Monitoring and maintenance
- Extension of Connecticut Water Company (CWC) Distribution System
 - Connection to existing system in Town of Chester
 - CWC to provide all monitoring and maintenance

Water Supply Alternatives – Screening Process

- Effectiveness in protecting human health
- Reliability
 - Short and long term
- Ability to implement
 - Planning, design, construction, operation
- Cost
 - Capital cost
 - Monitoring and maintenance

Water Supply Alternatives – Rejected Alternative

1. Development of Community Water Supply

- Protection of human health
 - Uncertain due to many unknowns
- Reliability
 - Potentially reliable if adequate source was identified and developed
- Implementation uncertainty
 - Source property identification and acquisition
 - Supply yield and quality uncertainty
 - Existing pollution plume migration somewhat unknown
 - Would require development and operation of community water supply source and distribution system
- Cost
 - Similar to other alternatives considered

Water Supply Alternatives – Rejected Alternative

2. New Individual Wells

- Protection of human health
 - Extremely uncertain due to presence of pollution plume
 - Routine water sampling still needed to ensure water is potable
- Reliability
 - Uncertain due to presence of pollution plume
- Implementation uncertainty
 - Existing pollution plume in overburden and bedrock would likely impact new wells
- Cost
 - Would be less than other alternatives if individual water treatment systems were not required

Detailed Evaluation of Remaining Water Supply Alternatives

Water Supply Alternatives – Detailed Analysis

3. Individual Water Treatment Systems

- Installation and/or continued use of granular activated carbon (GAC) treatment systems
 - At all study area properties
 - Standard (dual stage) 84 locations
 - Enhanced (three stage) 15 locations
 - 1,4-dioxane
 - Bottled water to be provided to properties with 1,4-dioxane issues

Detailed Analysis – Individual Water Treatment Systems

- Protection of human health
- Reliability
 - Protective and reliable if no 1,4-dioxane, assuming adequate monitoring and maintenance
 - Bottled water still needed for wells with 1,4-dioxane
- Ability to implement
 - Standard installation process
- Consistent with Town Plans of Conservation and Development (POCD) and State C&D Plan
- Connecticut Environmental Policy Act (CEPA)
 - Short-term construction impacts, long-term limited
 - Unlikely to require full CEPA evaluation

Detailed Analysis – Individual Water Treatment Systems

- Future contamination potential
 - Overburden and bedrock groundwater pollution
 - Complexity of hydrogeology and plume characteristics
- Public acceptance
 - Likely problematic
- Cost
 - Capital cost \$700,000
 - Net present value of operation, monitoring and maintenance (20 years) - \$3,860,000
- Implementation schedule
 - Approximately 6 months

Water Supply Alternatives – Detailed Analysis

- 4. Connection to Existing CWC Water Distribution System in Town of Chester
 - Water demand calculations and main sizing
 - Study area
 - Water main corridor (Haddam/Chester)
 - Future potential demand
 - > Fire protection

Water Demand Calculations			
Method	Total Average Daily Demand (Gallons Per Day)	Maximum Daily Flow (Gallons Per Day)	Peak Hourly Demand (Gallons Per Minute)
AECOM Existing Demand	73,789	100,041	340
AECOM Maximum Development	119,488	168,197	570

Base layout: 8-inch diameter water main

Base layout: 8-inch diameter water main

Water Main Extension Propose	-I M-1 Committee American	Dece I suspet (O lock)
Water Wain Extension Propose	a water Silbniv Area —	Basa Lavolit IX-Inchi
Trace main Extension in 100036	d Water Supply Area —	Dase Layout (0-111011)

Section	Pipe Diameter (in.)	Length (ft)
Route 154 – Chester	8	4,082
Route 154 – Haddam	8	8,863
Route 82 (Bridge Road)	8	2,735
Little Meadow Road	8	3,368
Camp Bethel Road and Bethel Lane	8	1,550
Bridge Lane	8	450
South Side Bluff	8	750
Brookes Court	8	510
	Total Length	22,308

Alternate layout: 8-inch diameter water main

Alternate layout: 8-inch diameter water main

Water Main	Extension Proposed W	ater Supply Area –
	Extension Proposed W Alternate Layout (8-I	nch)

Section	Pipe Diameter (in.)	Length (ft)
Route 154 – Chester	8	4,082
Route 154 – Haddam	8	5,618
Route 82 (Bridge Road)	8	2,735
Little Meadow Road	8	4,668
Camp Bethel Road and Bethel Lane	8	1,550
Bridge Lane	8	450
South Side Bluff	8	750
Brookes Court	8	510
	Total Length (ft)	20,363

Base layout: 12-inch diameter water main

Base layout: 12-inch diameter water main

Water Main Extension Pro	is a seal Matair Consist.	Auga Daga Laura	114 /40 100 06
Water Main Extension Pro	noseo water Silbini	/ Area — Base I avo	
Tratoi mani Extension i i c	posca tratci cappi	Aica Base Eave	MIC (I & III OII /

Section	Pipe Diameter (in.)	Length (ft)
Route 154 - Chester	12	4,082
Route 154 – Haddam	12	8,863
Route 82 (Bridge Road)	12	2,735
Little Meadow Road	8	3,368
Camp Bethel Road and Bethel Lane	8	1,550
Bridge Lane	8	450
South Side Bluff	8	750
Brookes Court	8	510
	Total Length	22,308

Alternate layout: 12-inch diameter water main

Alternate layout: 12-inch diameter water main

Water Main Extension Proposed Water Supply Area – Alternate Layout (12-Inch)

Section	Pipe Diameter (in.)	Length (ft)
Route 154 – Chester	12	4,082
Route 154 – Haddam	12	5,618
Route 82 (Bridge Road)	12	2,735
Little Meadow Road	12	4,668
Camp Bethel Road and Bethel Lane	8	1,550
Bridge Lane	8	450
South Side Bluff	8	750
Brookes Court	8	510
	Total Length (ft)	20,363

Water Quality Study – Fall 2016

- Study conducted to simulate potential water quality delivered to Tylerville area
- Evaluation of Disinfection Byproducts (DBPs)
 - Extension of CWC system will increase water age and lower chlorine residual within Study Area
 - Need to balance disinfection and DBPs
 - Worst case condition is typically in the fall when water use drops, and source water still warm
- CWC model used for hydraulics and water quality simulation
- Water samples collected at treatment plant and dosed with different amounts of chlorine to measure residual chlorine and DBP formation

Water Quality Study – 2016

- Findings
 - Low organic finished water reduces potential for DBP issues
 - Slight increase in chlorine dosing required at treatment plant, within acceptable regulatory limits
 - Possible need to flush water main to reduce DBPs when conditions warrant
 - Frequency/duration would be determined by CWC

- Protection of human health
- Reliability
 - Greatest degree of protection and reliability
- Fire protection
 - CWC system would provide some level of fire protection flows
 - Assuming fire hydrants and associated valves are installed
- Ability to implement
 - Standard installation process

Capital Costs

Estimated Capital Costs for Public Water Main Alternatives

<u>Alternative</u>	<u>8-inch Main</u>	<u>12-inch Main</u>
	\$7.005.000	\$7.700.000
Base Layout	\$7,225,900	\$7,789,900
Alternative Layout	\$6,768,900	\$7,396,900
Fire Protection (hydrants)	\$225,200	\$232,400

Users Costs and Fees

Estimated Costs for Public Water Service for End Users			
Property Type	<u>Residential</u>	<u>Commercial</u>	
Service Turn On (one time)	\$43.00	\$43.00	
Basic Service Charge (per month)	\$25.87	\$82.81	
Water Usage (per 1,000 gallons)	\$7.907	\$6.920	

- All fees are as approved by Connecticut Public Utilities Regulatory Authority (PURA)
- Typical residential annual cost approximately \$600

Municipal Fire Protection Cost

Estimated Monthly Costs for Public Fire Protection				
Service Fee	Town of Chester	Town of <u>Haddam</u>		
Hydrant charge (\$18.80/hydrant/month)	\$75 (4 hydrants)	\$395 (21 hydrants)		
Linear foot charge (\$0.09522/lf/month)	\$390	\$1,735		
Total Monthly Cost	\$465	\$2,130		

- Base layout, 8-inch alternative consistent with Haddam and Chester POCDs
- Connecticut Conservation and Development Policies Plan (C&D)
 - Extension of CWC system into Study Area consistent but exception may be required for areas outside Study Area (Route 154 corridor)
 - 12-inch main may not be consistent with C&D Plan
 - Additional capacity may trigger EIE requirement
 - Locational Guide Map
 - Used in aiding decision making for state funded projects

Connecticut C&D Plan Locational Guide Map

- Connecticut Environmental Policy Act (CEPA)
 - CT DEEP will determine (after public scoping) if Environmental Impact Evaluation (EIE) is required
- Future contamination potential None
 - Overburden and bedrock groundwater pollution
 - Complexity of hydrogeology and plume characteristics
 - Pollution likely to persist for many years
 - Connection to CWC system will eliminate exposure

- Public acceptance
 - Likely widely accepted
- Implementation schedule
 - Approximately 12-18 months for design & construction
 - Assumes EIE is not required

Selected Water Supply Alternative

Base layout: 8-inch diameter water main

Base Layout: 8-inch main

- Calculated water demand within CWC Margin of Safety
- Provides potable water to Study Area properties
- Most feasible, long-term alternative
- Provides some level of fire protection
 - Assumes fire hydrants and associated valves are installed – Towns' discretion
- Consistent with Haddam and Chester POCDs

Base Layout: 8-inch main

- Consistent with Connecticut C&D Plan
 - Project focus is to provide potable water to Study Area (within Village PFA)
 - Transmission main from connection point in Town of Chester to Study Area
 - Property connections along dedicated transmission main to be allowed only if a public health need is determined by local health department, CT DPH, CT DEEP

Base Layout: 8-inch main

- Project Funding
 - 2011 State Bond Commission \$2,100,000 award
 - CT DEEP to request balance of selected alternative capital cost - \$5,125,900
- Unallowable Costs
 - Fire hydrants
 - Increased cost for 12-inch main
 - Permits

Path Forward – Estimated Timeframe

- Public comments accepted through July 10, 2017
- Finalize Alternatives Evaluation Report, considering public comments received
 - Comments will be addressed in report and in appendix to final document
- CT DEEP to request balance of funding for project from Bond Commission – Summer-Fall 2017
- Town of Haddam to enter into Consent Order with CT DEEP in order to receive funding
- Finalize design plans Winter 2017/2018
- Begin construction Late 2018

Thank You

Shannon Pociu
Environmental Analyst 3
Remediation Division
Connecticut Department of Energy and Environmental Protection
79 Elm Street
Hartford, Connecticut 06106

shannon.pociu@ct.gov 860.424.3546